Establishing detection efficiency for surface contamination measurements

Diego Estan, Radiation Protection Officer diego.estan@cnsc-ccsn.gc.ca

Outline

- Why we need to know detector efficiency?
- Minimum Detectable Activity (MDA)
- Uncertainty
- Using the decommissioning tool to calculate CPM to Bq/cm², MDA, and uncertainty
- Methods for measuring/establishing detection efficiency

Instrument Detection Efficiency

dps = disintegration per second = Bq cps = counts per second in a detector

Not all of the emissions reach the detector - # of Bq on the surface will not equal measured cps

Why do we need to know efficiency?

To convert from cpm to Bq or Bq/cm^2 to compare against regulatory criteria:

- Typical clearance criteria for a Nuclear Substances licence include:
 - 0.3 Bq/cm² for all Class A radionuclides;
 - 3 Bq/cm² for all Class B radionuclides; or
 - 30 Bq/cm² for all Class C radionuclides; averaged over an area <= 100 cm²
- Transport Criteria:
 - 4 Bq/cm² beta/gamma and 0.4 Bq/cm² alpha, averaged over an area <= 300 cm²

Factors affecting detection efficiency

- Distance to source (attenuation of alpha/beta particles in air)
- Detection window to source geometry
- Window thickness/energy cut-off (beta energies are a spectrum)
- Gamma energy (likelihood of interaction with detector)

Typical Detector Types and Instruments

thin window GM "pancake" - $\alpha\beta\gamma$

proprietary thick ZnS scintillator "Berthold LB124" - $\alpha/\beta\gamma$

thin Nal $\ - \ \uparrow \ energy \ \beta, \ \downarrow energy \ \gamma$

thin ZnS sandwiched to plastic scintillator "dual phosphor" - $\alpha/\beta\gamma$

How to establish detection efficiency?

We will examine four different methods, in order of regulatory preference:

- 1. NIST (or equivalent outside USA) traceable planar source where calibration nuclide is the same as target nuclide
- 2. Traceable planar source where calibration nuclide(s) are suitable surrogate(s) for target nuclide
- 3. "Homemade" source of known activity (100 Bq to 1 kBq), where calibration nuclide is the same as target nuclide
- 4. Published or suggested efficiency value (manufacturer or CNSC) for target nuclide

NOTE: efficiency must be verified and documented at minimum annually

Instrument Detection Efficiency

$$Eff(\%) = \frac{(cps_{source} - cps_{background})}{source} \times 100\%$$

- Convert counts per minute (cpm) to counts per second (cps); i.e., divide by 60
- Use total activity of the calibration source (yields <u>absolute</u> 4pi efficiency)
- Do not shield (no plastic bags) the calibration source in any way (unless trying to isolate counts for specific emission type)
- Use consistent and repeatable source-to-detector distance: ~ 1cm
- Measure background in an area devoid of nuclear substances
- Counting time should be the same for source and background
- For nuclides with short-lived progeny (Sr-90/Y-90), consider the activity of the parent only

Converting CPM to activity

CPM to Bq/cm^2 :

Removable surface activity = $\frac{N-NB}{E \times 60 \times A \times F}$

- N = count rate in counts per minute (CPM) measured directly or on the wipe
- NB = background count rate (CPM)
- E = instrument efficiency
- 60 = sec/min
- A = area wiped or detector area in cm² (for direct measurement)
- F = collection factor if a wipe if F is not determined experimentally, use 0.1

Minimum Detectable Activity (MDA)

Minimal Detectable Activity (MDA): minimum amount of activity in a sample that can be detected with a 5% probability of erroneously detecting radioactivity when none is present, and a 5% probability of not detecting radioactivity when it is present

Calculating the MDA

Can be expressed in Bq, Bq/cm², Bq/m³ or any other unit of interest

MDA (Bq/cm²) =
$$\frac{2.71 + 4.66 \sqrt{NB \times [T]_{60}}}{E \times T \times A \times F}$$

- NB = background count rate in CPM and E/A/F = efficiency/surface area/collection factor
- T = sample count time and background count time in seconds
- for digital instruments with scaler functions: time is user selected
- for ratemeters: integration time typically 2-7 secs (consult manual)
- for ratemeters: integration time may be variable based on count rate (newer digital meters)
- for ratemeters: some have slow modes for longer integration time (Ludlum Model 14C: 4/22 sec)

Calculating the Uncertainty

$$\sigma(cps) = \sqrt{x} = SD = \sqrt{\frac{counts_{ample}}{(s \, ample \, ounttime(s))^2}} + \frac{counts_{background}}{background ounttime(s))^2}$$

- Standard deviation (SD) is expressed in counts but can be converted into cps if divided by time, or Bq/cm² if E and A are factored
- If the result + 2xSD (95% confidence interval) is greater than the clearance level, then the measured item should be considered contaminated
- Formula for uncertainty in Bq/cm² if counting time is the same for the sample and background:

 $2\sigma \text{ uncertainty (Bq/cm²)} = \pm 2 \times \frac{\sqrt{N \times [T/_{60}] + NB \times [T/_{60}]}}{E \times T \times A \times F}$

Is the MDA low enough?

1. MDA is set at 0.5 times the applicable contamination criterion or limit:

$$\frac{2.71 + 4.66\sqrt{NB \times [^{T}/_{60}]}}{E \times T \times A \times F} \le 0.5 \times \text{contamination limit}$$

2. Assume that a typical measurement near the applicable criterion is twice the background measurement (i.e., N = 2NB) and that the counting time T is identical for both:

$$\frac{2.71+4.66\sqrt{NB\times[T/_{60}]}}{E \times T \times A \times F} + 2 \times \frac{\sqrt{N \times [T/_{60}] + NB \times [T/_{60}]}}{E \times T \times A \times F} \leq \text{contamination limit}$$

$$\frac{2.71+8.12\sqrt{NB\times[T/_{60}]}}{E \times T \times A \times F} \leq \text{contamination limit}$$

13

Establishing MDA and converting CPM to Bq/cm² with uncertainty

Don't reinvent the wheel - Use the Decommissioning Reporting Tool!

	SWIPES - Method of detection	Thermo RadEye B20				Nuclide with lowest detection efficiency				Tc-99m		
		Bkgnd CPM	28.6	Count T (sec)	120	Swipe Area (cm2)	100	Detector Efficiency (%)	0.62%	Swipe Eff (%)	10.00%	
DIRECT - Method of detection		Thermo RadEye B20				Nuclide with lowest detection efficiency				Tc-99m		
		Bkgnd CPM	28.6	Count T (sec)	120	Detector area (cm2)	15.5	Detector Efficiency (%)	Detector Efficiency (%) 0.62%			
SURFACE CONTAMINATION RESULTS												
ENTER VALUES IN YELLOW CELLS - RED CELLS INDICATE SAMPLE CONTAMINATION + UNCERTAINTY >= REGULATORY CRITERION												
SWIPES		MDA (Bq/cm2) =		5.101	Criterion (Bq/cm2)		DIRECT		MDA (Bq/cm2) =		3.291	
Sample #	Description	Gross CPM	Bq/cm2	2σ (+/-) Bq/cm2		30	Sample #	Description	Gross CPM	Bq/cm2	2σ (+/-) Bq/cm2	
1	Sample 1	100	19.194	4.311			1	Sample 1	65	6.313	2.373	
2	Sample 2	100	19.1935	4.311			2	Sample 2	125	16.719	3.040	
3	Sample 3	200	46.075	5.748			3	Sample 3	200	29.726	3.708	
4							4					
5							5					
6							6					
7							7					
8							8					
9							9					
10							10					
11							11					
12							12					
13							13					
14							14					
15							15					
16							16					

The sheet labelled "Data – User Defined" can be copy/pasted and used for routine contamination measurements, and as an MDA calculator ¹⁴

Establishing Detection Efficiency

Let's examine the methods that can be used to establish detection efficiency.

Method #1 – Traceable planar source

- If source area > detector active area, establish activity under the detector
 - *Source* = 100*cm*², *detector* = 15.5*cm*²
 - *Reference activity = source activity x (15.5/100)*
- Repeatable source to detector distance (~1 cm, use a jig)
- Efficiency is:

$$Eff(\%) = \frac{(cps_{source} - cps_{background})}{source(ivit)(Bq)} \times 100\%$$

 Repeat, document and update (if outside +/- 20%) annually for every contamination meter used to quantify surface contamination against regulatory criteria

NOTE: This method cannot be used for shortlived medical isotopes due to unavailability of traceable sources

Method #2 - Traceable surrogate planar source

Important that energies are as close as possible, examples:

Isotope to measure	Max beta/electron energy	Gamma energy (branching ratio)		
I-131	606 keV (89%)	364 keV (81%)		
CI-36/Ba-133 Surrogates	708 keV (100%) Cl-36	356 keV (62%) Ba-133		
Tc-99m	120/138 keV (11%)	141 keV (89%)		
Co-57 Surrogate	115/129 keV (3.2%)	122 keV (85%)		

Beta counting efficiency vs energy

Typical energy cut-off for mylar window on pancake = ~ **75 keV** Generally, as the beta energy <u>increases</u>, efficiency <u>increases</u> (for detectors sensitive to betas)

Gamma counting efficiency vs energy

Generally, as the gamma energy increases, efficiency decreases

19

Method #2 - Traceable surrogate sources – Branching Ratios

- Branching ratio corrections between target and surrogate nuclide must be applied when the $\alpha/\beta/\gamma$ emissions from the surrogate can be isolated; achieved by:
 - The detector: e.g., thick Nal only sensitive to γ , or a Ludlum 43-93 can discriminate α from $\beta\gamma$ (note: a GM pancake does not discriminate $\alpha/\beta/\gamma$)
 - The sources: separate surrogates for one target nuclide (e.g., Co-57(γ) source and C-14(β) source for Tc-99m, example to follow)
 - Shielding the source: verify $\alpha/\beta/\gamma$ count rate separately with shielding (e.g., Co-60 ($\gamma\beta$) planar source with/without plastic shield to isolate γ/β counting for Zn-65, example to follow)

Method #2 – Example using a GM pancake and Tc-99m

Same steps as in Method #1, but a surrogate nuclide is chosen

Isotope to measure	Max beta/electron energy	Gamma energy			
Tc-99m	120/138 keV (11 %)	141 keV (89 %)			
Co-57 Surrogate (gamma)	Source is designed to block electron emissions	122 keV (85 %)			
C-14 Surrogate (beta)	156 keV (100 %)	None			
Results					
Isotope	Measured efficiency	Correction factor applied			
Co-57 (gamma)	0.21 %	<mark>0.21 % x (89/85)</mark> = 0.22 %			
C-14 (beta)	5.3 %	<mark>5.3 %</mark> x (11/100) = 0.58 %			

Extrapolated efficiency for Tc-99m: 0.22% + 0.58% = 0.8%

Method #2 – Example using a GM pancake and Zn-65

Same steps as in Method #1, but a surrogate nuclide is chosen

Isotope to measure	Max beta/electron energy	Gamma energy				
Zn-65	330 keV (1.4 %)	1116 keV (51 %)				
Co-60 Surrogate (gamma)	User blocks beta emissions with plastic (result = gamma cpm)	1173/1332 keV (200 %)				
Co-60 Surrogate (beta)	318 keV (100 %)	Gamma cpm subtracted away by user (unshielded cpm – gamma cpm = beta cpm)				
Results						
Isotope	Measured efficiency	Correction factor applied				
Co-60 (gamma)	0.39 %	<mark>0.39 % x (51/200)</mark> = 0.1 %				
Co-60 (beta)	16.5 %	16.5 % x (1.4/100) = 0.23 %				

Extrapolated efficiency for Zn-65: 0.1% + 0.23% = 0.33%

Method #3 – Example using Tc-99m

- Same steps as in Method #1, but a custom source is produced
- / 1 ml of Tc-99m measured at 1 MBq in a dose calibrator (just an example)
- Option A: wait 48 hours
 - Decayed activity = 1E6 Bq x e^((-ln(2)/6.02 hrs)*48 hrs) = 3.94 kBq
 - Extract a known fraction, spread evenly over 15cm² swipe
 - Measure the count rate and establish efficiency
- Option B: dilute with known volumes
 - Add known volume of water to achieve $^{Bq}/\mu l$ (may need multiple dilution steps)
 - Extract known activity (0.1 to 1 kBq), spread evenly over 15 cm² swipe
 - Measure the count rate and establish efficiency

Method #3 – Example using Tc-99m

- Must be repeated annually, and efficiency established/verified per detector, or
- Efficiency information can be transferred immediately to a long-lived check source (e.g., Cs-137) for every detector; for example:
 - Efficiency of 0.67% established using a decayed or diluted Tc-99m source for detector 1
 - Count rate from Cs-137 check source is measured (use same reference distance), and an efficiency of 0.16% is measured for detector 1
 - Efficiency ratio of 0.67/0.16 = 4.2 used to *transfer* the Tc-99m information to the Cs-137 source
 - Detector 1 verified and documented annually with Cs-137 source by multiplying the measured efficiency by 4.2

Method #4 – Example using Tc-99m for a GM pancake

- Contact your licensing specialist (or email me directly) for a reasonable and conservative efficiency to use for the target nuclide, or
- Verify the efficiency suggested or published by the manufacturer for target nuclide
 - For example, for Tc-99m: 0.5% (Ludlum publishes <1%, CNSC suggests 0.5%)
 - Same process seen in Method 3 to transfer efficiency to long-lived check source(s) for every detector and verify/document annually (update efficiency value if outside +/- 20% of initial value)

Method #4 – NOTES

- Method #4 is the least accurate PLEASE adopt method 1, 2 or 3 if possible
- / Transfer check source should ideally have the same emission types ($\alpha/\beta/\gamma$) as target nuclide(s)
- If instrument has dual detector channels (α and β/γ, e.g., Ludlum 43-93 or Thermo AB100), then transfer check source(s) must have α/β/γ emissions to verify and transfer efficiency to both channels
- <u>BE CAREFUL</u>: Some manufacturers overstate their efficiencies
 - Berthold LB124 published efficiency for Tc-99m is 7.9%, experimentally verified to be 1-2%

Questions?

Thank you!